

A SUMMARY OF THE CHANGES FROM PHP 5.6 TO PHP 8.2

TABLE OF CONTENTS

OVERALL FROM 5.6-8.2

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

MISCELLANEOUS CHANGES

INDEPENDENT-VERSION CHANGES

5.6 - 7.0

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

7.0 - 7.1

BACKWARDS-INCOMPATIBLE CHANGES:

DEPRECATED FEATURES

7.1 - 7.2

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

7.2 - 7.3:

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

7.3 - 7.4:

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

7.4 - 8.0

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

8.0 - 8.1

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

8.1 - 8.2:

BACKWARDS-INCOMPATIBLE CHANGES

DEPRECATED FEATURES

ADDITIONAL CHANGES

OVERALL FROM 5.6 - 8.2

BACKWARDS-INCOMPATIBLE CHANGES

- Several fatal errors have been converted into Exceptions, a tool to check for possible

fatal errors before they execute. These exceptions extend the Error class in PHP, which

further extend the Throwable class. Therefore, custom error handles may no longer be

triggered due to an exception being thrown instead, causing fatal errors for said

uncaught exceptions. The PHP 7 errors page contains further information on the

behaviors of errors.

- The function set_exception_handler is no longer guaranteed to receive Exception

objects, causing a fatal error when an exception handler initialized with said function

using a type declaration of Exception tries to catch an Error object. To make the

set_exception_handler() function work on PHP7, simply replace the exception type

declaration with Throwable.

- Internal constructors always throw exceptions on failure, instead of an unusable object

or null.

- Variable handling has been changed. Due to this, handling of indirections have also

changed. The following chart should serve as a guide on the differences between PHP5’s

interpretation and PHP7’s interpretation. Any intentions for a certain expression to

utilize a PHP5 interpretation must be changed to accommodate to these new changes:

Expressions: PHP5’s interpretation: PHP7+’s interpretation:

$$foo[‘bar’][‘baz’] ${$foo[‘bar’][‘baz’]} ($$foo)[‘bar’][‘baz’]

$foo->$bar[‘baz’] $foo->{$bar[‘baz’]} ($foo->$bar)[‘baz’]

$foo->$bar[‘baz’]() $foo->{$bar[‘baz’]}() ($foo->$bar)[‘baz’]()

Foo::$bar[‘baz’]() Foo::{$bar[‘baz’]}() (Foo::$bar)[‘baz’]()

- However, if you want to use the old interpretation, just explicitly write the expression in

the PHP 5 interpretation format.

- The changes to indirection also affect the global keyword, but the curly brace syntax can

be used to emulate the previous behavior if needed:

Example:

<?php

function f() {

 // Valid in PHP 5 only.

 global $$foo->bar;

https://www.php.net/manual/en/language.errors.php7.php

 // Valid in PHP 5 and 7.

 global ${$foo->bar};

}

?>

- list() handling has also been changed.

- list() no longer assigns the variables in reverse order, and now assigns variables in the

order they are defined.

- list() constructs can no longer be empty. The following are illegal in PHP7 and beyond:

<?php

list() = $a;

list(,,) = $a;

list($x, list(), $y) = $a;

?>

- list() can no longer be used to convert strings into arrays. Use str_split() instead.

- Parentheses in function arguments (what you pass in to functions) no longer affect

behavior, and the presence of parentheses in function arguments now generates

warnings in PHP7. (Could be deprecated later on.) Instead, make sure to define new

values with whatever you would place in the parentheses in function arguments, and

then pass those values in the function arguments.

- Integer handling has been changed.

- Octal literals that contain invalid numbers (that is, octals that contain 8 and/or 9 as

digits), now cause a parse error.

- Bit-shifts (>> and <<) by negative numbers now result in errors.

- Bit-shifts in both directions beyond 64 now always result in 0.

- Division by 0 has been changed. Consult the following table to learn of the distinctions.

Expression PHP 5.6 Output PHP 7+ Output

3 / 0 E_WARNING + false float(INF)

0 / 0 E_WARNING + false float(NAN)

0 % 0 E_WARNING + false Fatal Error

- String handling has been changed.

https://www.php.net/manual/en/function.str-split.php

- Hexadecimal numbers are no longer considered as numeric meaning they cannot be

used wherever a numeric string can be used. Consult the following table for more

information:

Code to run: PHP 5.6 Output PHP7+ Output:

<?php
var_dump("0x123" == "291");
var_dump(is_numeric("0x123
"));
var_dump("0xe" + "0x1");
var_dump(substr("foo",
"0x1"));
?>

bool(true)
bool(true)
int(15)
string(2) "oo"

bool(false)
bool(false)
int(0)

Notice: A non well formed
numeric value encountered
in /tmp/test.php on line 5
string(3) "foo"

- filter_var() Can be used to check if a string contains a hex number, and also to convert

a string of that type to an int.

- \u can cause errors, and should be removed.

- Several functions have been removed. A list of removed functions is provided:

● call_user_method()

● call_user_method_array()

● All ereg* functions

● Mcrypt aliases

● All ext/mysql functions

● All ext/mssql functions

● Intl aliases

● set_magic_quotes_runtime() and magic_quotes_runtime()

● set_socket_blocking()

● dl()

● PostScript Type 1 fonts

- New objects cannot be assigned by reference (=&)

- Null, true, and false cannot be used to name classes, interfaces, and traits.

- Additionally, resource, object, mixed, and numeric should not be used to name classes,

interfaces, and traits.

- Yield is now a right associative operator. Parentheses can be used to preserve the

original intention.

- Functions can no longer have multiple parameters with the same name

- Functions inspecting arguments now report the current parameter value.

- Switch statements cannot have multiple default blocks

https://www.php.net/manual/en/function.filter-var.php

- $HTTP_RAW_POST_DATA has been removed, and the php://input stream should be

used instead.

- The JSON extension is replaced with JSOND, causing 3 major changes

1. Numbers can no longer end in a decimal point.

2. When using scientific notation, exponents must not immediately follow a

decimal point.

3. Empty strings are no longer considered valid JSON.

- Prior to 7.1, you were able to pass a function with too few arguments, only scoring a

warning. Now, this results in an Error exception being thrown. To avert this crisis, make

sure to either create overloaded versions of functions that accommodate for a lower list

of parameters, or just add default values in the function call. In layman’s terms,

overloaded functions share the same name, but have different parameter lists and/or

different body code. To accommodate for less parameter cases, simply copy - paste the

old function, omit a selected parameter in the parameter list, and initialize it in the body

as a default value.

- Dynamic calls (or calls that either inspect or modify another class), are forbidden for the

following functions:

● assert() (with a string as the first argument)

● compact()

● extract()

● func_get_args()

● func_get_arg()

● func_num_args()

● get_defined_vars()

● mb_parse_str() (with one argument)

● parse_str() (with one argument)

- Doing said dynamic calls will result in a warning (but will possibly later on will be

promoted to Error exceptions and fatal errors)

- An example of a dynamic call can be found below:

<?php

(function () {

 $func = 'func_num_args';

 $func();

})();

- The following names cannot be used to name iterables, strings, and traits:

● Void

● iterable

- Integer operations and conversions on numerical strings now respect scientific notation.

https://www.php.net/manual/en/wrappers.php.php#wrappers.php.input

- This also includes the (int) typecast operation, and conversions between decimal and

any other format. A list of functions affected can be found below:

● intval() (where the base is 10)

● settype()

● decbin()

● decoct()

● dechex()

- rand() is now aliased to mt_rand()

- srand() is now aliased to mt_srand().

- The preceding two changes also affect the following functions:

● rand()

● shuffle()

● str_shuffle()

● array_rand()

- The ASCII delete control character (0x7F) can no longer be used in identifiers.

- Calling destructors on incomplete objects is now forbidden, and destructors are never

called on objects that throw an exception during their initialization.

- call_user_func() and call_user_func_array() now always generate warnings upon calls to

functions that expect references as arguments.

- The empty index operator is now not supported for strings anymore, and trying to apply

it to a string now throws a fatal error.

- Example of applying an empty index operator to a string:

$str[] = $x

- String modification by character on empty strings now works like for non-empty strings.

A table of the change in string modification is provided below.

Code Output in PHP 7.0 Output in PHP 7.1+

<?php
$a = '';
$a[10] = 'foo';
var_dump($a);
?>

array(1) {
 [10]=>
 string(3) "foo"
}

string(11) " f"

- As you can see, writing to a location out of range pads the offset with spaces, and only

the first character of the assigned character is used.

- The following ini directives have been removed:

● session.entropy_file

● session.entropy_length

● session.hash_function

● session.hash_bits_per_character

- The ordering of elements in an array has changed when said elements have been

automatically created by referencing them in by a reference assignment. Consult the

following table for further information about this change:

Code Output in PHP 7.0 Output in PHP 7.1+

<?php
$array = [];
$array["a"] =& $array["b"];
$array["b"] = 1;
var_dump($array);
?>

array(2) {
 ["a"]=>
 &int(1)
 ["b"]=>
 &int(1)
}

array(2) {
 ["b"]=>
 &int(1)
 ["a"]=>
 &int(1)
}

- The error message for E_RECOVERABLE errors is now “Recoverable Fatal Error”

- The $options parameter of unserialize() is now strictly typed, only allowing arrays and

bools to be given.

- DateTime and DateTimeImmutable now incorporate microseconds, resulting in

comparisons between two instances that are one microsecond apart producing false.

- long2ip() now expects an int instead of a string.

- Return statements without arguments in functions that declare a return type are now

forbidden.

- number_format() no longer can be able to return -0.

- Integer keys from arrays can now be able to be converted to objects, when casting

arrays to objects, and vice versa. Consider what is now available in the following 2 code

snippets:

Code Snippet 1:

<?php

// array to object

$arr = [0 => 1];

$obj = (object)$arr;

var_dump(

 $obj,

 $obj->{'0'}, // now accessible

 $obj->{0} // now accessible

);

Code Snippet 2:

<?php

// object to array

$obj = new class {

 public function __construct()

 {

 $this->{0} = 1;

 }

};

$arr = (array)$obj;

var_dump(

 $arr,

 $arr[0], // now accessible

 $arr['0'] // now accessible

);

- Passing null to the get_class() function now results in a E_WARNING instead of the name

of the enclosing class. In order to produce the same results that would be achieved in

prior versions, simply omit the argument.

- Attempting to count() non-countable types now results in an E_WARNING error.

- This also affects the alias function sizeof()

- Arrays and objects of classes extending the Countable interface are considered

countable types.

- gettype(), when used on a closed resource, now results in a string of “resource (closed)”

being returned (as opposed to a string of “unknown type”)

- Using the is_object() function on the __PHP_Incomplete_Class class now returns true.

- Unqualified references to undefined constraints now result in an E_WARNING error.

- The officially supported minimum Windows version is now Windows 7.

- The object name is now hard-reserved, prohibiting it from being used as a class, trait, or

interface name.

- Support for NetWare is now removed.

- The bcmod() function no longer truncates fractional numbers to integers.

- The following hash functions no longer accept non-cryptographic hashes:

● hash_hmac()

● hash_hmac_file()

● hash_pbkdf2()

● hash_init()

- The sql.safe_mode ini setting is now removed.

- The zone element of the array resulting from the date_parse() and

date_parse_from_format() now represents seconds instead of minutes.

https://www.php.net/manual/en/function.count.php
https://www.php.net/manual/en/function.hash-hmac.php
https://www.php.net/manual/en/function.hash-hmac-file.php
https://www.php.net/manual/en/function.hash-pbkdf2.php
https://www.php.net/manual/en/function.hash-init.php

- The names of incoming cookies are now no longer url-decoded.

- Heredoc/Nowdoc changes have been made, thus causing doc strings that contain the

end label inside their body to cause syntax errors.

- Continue statements that target switch control flow structures now generate warnings.

To absolve this issue, replace every mention of continue in the switch statement with

continue 2.

- Array accesses, where an array extends ArrayAccess, using string literals no longer result

in an implicit cast from string literal to integer.

- Static properties are no longer separated by reference assignments, where static

properties could be overridden by a typecast in a child cast. The loophole has now been

fixed.

- References returned by Array and Property Accesses are now immediately unwrapped,

providing the value instead of the memory address.

- Support for BeOS has been dropped.

- Exceptions thrown due to automatic conversions of warnings into exceptions now work

the same way as manually-thrown exceptions.

- TypeError now reports wrong types as int and bool, instead of integer and boolean.

- rsh/ssh logins are disabled by default. Use imap.enable_insecure_rsh if you want to

enable them.

- Reflection export to string now uses int and bool instead of integer and boolean.

- Trying to use values of types null, bool, int, float, or resource as an array will now

generate notices.

- The get_declared_classes() function no longer returns anonymous classes that have not

been instantiated yet.

- Fn is now a reserved keyword.

- A <?php tag at the end of a file will now be interpreted as an opening PHP tag.

- Password-hashing algorithm identifiers are now nullable strings instead of ints.

- htmlentities() now raises a notice if it is used with an encoding for which only basic

entity substitution is supported..

- Fread() and fwrite() now return false if the operation failed.

- Attempting to serialize a CURLFile class or a Reflection object now generates an

exception.

- Calling var_dump() or a similar function on a DateTime or DateTimeImmutable object

now no longer leaves behind accessible properties on the object.

- Calling get_object_vars() on an ArrayObject instance now always returns the properties

of the ArrayObject itself. Previously, it returned the values of the wrapped array/object.

https://www.php.net/manual/en/imap.configuration.php#ini.imap.enable-insecure-rsh
https://www.php.net/manual/en/function.get-declared-classes.php

- String-to-number comparisons have been changed. Non-strict comparisons between a

number and a string now work by casting the number to a string and then comparing

the two strings. Consult the following table to learn more about this new behavior:

Comparison PHP 7.4 evaluation PHP 8.0+ evaluation

0 == “0” true true

0 == “0.0” true true

0 == “foo” true false

0 == “” true false

42 == “ 42” true true

42 == “42foo” true false

- Match is now a reserved keyword.

- Mixed is now a reserved word, and can no longer be used to name a class, trait, or an

interface.

- Assertion failures now throw by default. If the old behavior is wanted, set

assert.exception=0 in the ini settings.

- Methods with the same name as the class are no longer interpreted as constructors. The

__construct() method should be used instead.

- The ability to call non-static methods statically has been removed.

- The (real) and (unset) casts have been removed.

- Due to the removal of the track_errors ini directive, php_errormsg is no longer

available. You can use the error_get_last() function instead.

- each() has been removed, replaced with foreach and ArrayIterator.

- The ability to unbind this from proper closures that contain uses of this have also been

removed.

- Any array that uses a number n as its first numeric key will use n + 1 for its next implicit

key, even if n is negative.

- The default error reporting label is now E_ALL.

- Display_startup_errors is now enabled by default.

- #[is no longer interpreted as the start of a comment, as this syntax is now used for

attributes. Use // as the start of comments instead.

- The @ operator will no longer silence fatal errors, and error handlers that expect

error_reporting to be 0 when @ is used should be adjusted to use a mask check instead.

Consult the following code snippet for more information:

https://www.php.net/manual/en/language.oop5.decon.php#object.construct
https://www.php.net/manual/en/function.error-get-last.php
https://www.php.net/manual/en/control-structures.foreach.php

<?php

// Replace

function my_error_handler($err_no, $err_msg, $filename, $linenum) {

if (error_reporting() == 0) {

return false;

}

// ...

}

// With

function my_error_handler($err_no, $err_msg, $filename, $linenum) {

if (!(error_reporting() & $err_no)) {

return false;

}

// ...

}

?>

- As for replacing the functionality of the error suppression operator, @, wrapping the

function call in a try catch is the suggested replacement. Example:

 // Change this

$image = @imagecreatefromjpeg($imagePath);

if (!$image) {

 // handle failure

}

// To something like this

try {

 $image = imagecreatefromjpeg($imagePath);

} catch (\Throwable $e) {

 $hadError = true;

}

if (($hadError ?? false) || !$image) {

 // handle failure

}

- Also, please make sure that error messages are not displayed in production

environments, as it can result in information leaks. Ensure that display_errors=Off is

used in conjunction with error logging.

- Inheritance errors due to incompatible method signatures will now always generate a

fatal error.

- The precedence of the concatenation operator now takes the same precedence as bit

shifts (that is, after addition and subtraction).

- Arguments with a default value that resolves to null at runtime no longer implicitly

marks the argument type as null.

- The following cases now result in an Error instead of a Warning:

● Attempting to write to a property of a non-object

● Attempting to append an element to an array for which the PHP_INT_MAX key is

already used.

● Attempting to use an invalid type (array or object) as an array key or string

offset.

● Attempting to write to an array index of a scalar value.

● Attempting to unpack a non-array/Traversable.

● Attempting to access unqualified constants which are undefined.

- The following Notices have been converted into Warnings:

● Attempting to read an undefined variable.

● Attempting to read an undefined property.

● Attempting to read an unidentified array key.

● Attempting to read a property of a non-object.

● Attempting to access an array index of a non-array

● Attempting to convert an array to string.

● Attempting to use a resource as an array key.

● Attempting to use null, a boolean, or a float as a string offset.

● Attempting to read an out-of-bounds string offset.

● Attempting to assign an empty string to a string offset.

● Attempting to assign multiple bytes to a string offset.

- Unexpected characters in source files now result in a ParseError exception.

- The generated name for anonymous classes has changed, now including the name of

the first parent or interface.

- Non-absolute trait method references in trait alias adaptations are now required to be

unambiguous.

- The signature of abstract methods defined in traits is now checked against the

implementing class method.

- The arithmetic and bitwise operators +, -, *, /, **, %, <<, >>, &, |, ^, ~, ++, -- now

consistently throw a TypeError when one of the operands is an array, resource, or non-

overloaded object.

- The only exception to the change above is the array + array merge operation, which is

still supported.

- Float to string casting now always behaves local-independently.

- Support for deprecated curly braces for offset access has been removed.

- Applying the final modifier on a private method now produces a method unless the

method is a constructor.

- If an object constructor throws or exit()s, the object destructor will no longer be called.

- Namespaced names can no longer contain whitespace (what is outputted when you

press the spacebar).

- Nested ternaries now require explicit parentheses.

- Declaring a function called assert() inside a whitespace is no longer allowed.

- Several resource s have been migrated to objects.

- The ability to import case-insensitive constants from type libraries has been removed.

- mktime() and gmmktime() now require at least one argument. time() can still be used to

get the current timestamp.

- read_exif_data() has been removed, replaced by exif_read_data().

- The functions image2wbmp(), png2wbmp(), and jpeg2wbmp() have been removed.

- gmp_random() has been removed. Use gmp_random_range() or gmp_random_bits()

instead.

- The unused default_host argument of imap_headerinfo() has been removed.

- The imap_header() alias function of imap_headerinfo() has been removed.

- The functions ldap_sort(), ldap_control_paged_result() and

ldap_control_paged_result_response() have been removed.

- The OCI-Lob class has been renamed to OCILob

- odbc_connect() no longer reuses connections.

- openssl_seal() and openssl_open() now require method to be passed.

- The default error handling mode has been changed from “silent” to “exceptions”.

- Reflection export() methods have been removed. Instead, reflection objects can be cast

to string.

- SplFileObject::fgetss() has been removed.

- assert() will no longer evaluate string arguments, instead treating them like any other

argument.

- parse_str() can no longer be used without specifying a result array.

- The string.strip_tags filter has been removed.

- fgetss() has been removed.

https://www.php.net/manual/en/language.types.resource.php
https://www.php.net/manual/en/function.exif-read-data.php
https://www.php.net/manual/en/function.gmp-random-range.php
https://www.php.net/manual/en/function.gmp-random-bits.php

- Access to the $GLOBALS array is now subject to a number of restrictions. Write access to

the entire $GLOBALS array is no longer supported, however, you can still have write

access to individual array elements.

- When a method using static variables is inherited (but not overridden), the inherited

method will now share static variables with the parent method. Consult the following

code snippet on the next page for further information:

<?php

class A {

 public static function counter() {

 static $counter = 0;

 $counter++;

 return $counter;

 }

}

class B extends A {}

var_dump(A::counter()); // int(1)

var_dump(A::counter()); // int(2)

var_dump(B::counter()); // int(3), previously int(1)

var_dump(B::counter()); // int(4), previously int(2)

?>

- This means that static variables in methods now behave the same way as static

properties.

- An optional parameter specified before required parameters is now always treated as

required, even when using named arguments. Failing to do so will result in an error

being thrown.

- Most non-final internal methods now require overriding methods to declare a

compatible return type.

- Readonly is a keyword now, but you can still use it as a function name. However, that

practice could possibly soon be deprecated, then removed, so the best practice is to

treat it as a reserved keyword.

- Never is now a reserved keyword, thus it can no longer be used to name a class,

interface, or trait. It is also prohibited from being used in namespaces.

- The mysqlnd.fetch_data_copy INI directive has been removed.

- ext/mcrypt has been removed.

- The (real) cast is removed. Use (float) as well. Same goes for the is_real() function and

the is_float() function, respectively.

- DateTime’s createFromImmutable function and DateTimeImmutable’s

createFromMutable function now tentatively return static, instead of a DateTime object

https://www.php.net/manual/en/functions.arguments.php#functions.arguments.default

or a DateTimeImmutable object, respectively. The object operator will no longer work

with what is returned from this function, and the scope resolution operator (::), should

be used to access the properties.

- Number symbols in relative formats no longer accept a plus sign followed by a minus

sign, i.e. +-2

- The ODBC and PDO_ODBC extensions now escape the username and password in the

case where both a connection string and a username/password are passed, and the

string must be appended to.

- glob() now returns an empty array if all paths are restricted by open_basedir(), instead

of returning false. Use the following code snippet to preserve the original result:

if(count(glob()) == 0){

Return false;

}else{

Return glob();

}

- FileSystemIterator::__construct(): To maintain its previous behavior, the

FileSystemIterator::SKIP_DOTS constant must be explicitly set using the flags parameter.

- The following functions are no longer locale-sensitive, now performing ASCII case

conversion, as if the locale was C. The MBString extension offers localized versions of

these functions:

● strtolower()

● strtoupper()

● stristr()

● stripos()

● strripos()

● lcfirst()

● ucfirst()

● ucwords()

● str_ireplace()

- str_split() now returns an empty array for an empty string, instead of an array

containing a single empty string.

- ksort() and krsort() now do numeric string comparison under SORT_REGULAR using

standard PHP 8 rules.

- var_export() no longer omits the leading backslash for exported classes.

- The following methods now export their signature:

● SplFileInfo::_bad_state_ex()

● SplFileObject::getCsvControl()

● SplFileObject::fflush()

https://www.php.net/manual/en/datetime.formats.relative.php
https://www.php.net/manual/en/book.mbstring.php

● SplFileObject::ftell()

● SplFileObject::fgetc()

● SplFileObject::fpassthru()

- SplFileObject::hasChildren() now tentatively returns false, instead of bool

- SplFileObject::getChildren() now tentatively returns null

- GlobIterator now returns an empty array if all paths are restricted by open_basedir.

DEPRECATED FEATURES

- password_hash() salt option is now deprecated.

- Nested ternary operations must explicitly use parentheses to dictate the order of

operations.

- Array and string offset access syntax using curly braces is now deprecated.

- Using parent inside of a class without a parent is deprecated.

- The money_format() function is deprecated.

- If a parameter with a default value is followed by a required parameter, the default

value has no effect. This has been deprecated, and can be resolved by dropping the

default value.

- Calling get_defined_functions() with exclude_disabled explicitly set to false is

deprecated and now no longer has an effect.

- Sort comparisons that return true or false now throws a deprecation warning, and

should be replaced with an implementation that returns an integer less than, equal to,

or greater than 0. Consider the following code snippet as a guideline for changes to your

code:

<?php

// Replace

usort($array, fn($a, $b) => $a > $b);

// With

usort($array, fn($a, $b) => $a <=> $b);

?>

- Using an empty file as ZipArchive is deprecated.

- Serializable must now be implemented with __serialize() or __unserialize().

- Scalar types for built-in functions are nullable by default. This feature has been

deprecated.

- The implicit conversion of float to int which leads to a loss in precision is now

deprecated. This affects array keys, int type declarations in coercive mode, and

operators working on ints.

- Calling a static method, or accessing a static property directly on a trait is deprecated.

- Returning a value which is not from an array from __sleep() now generates a diagnostic.

- data_sunrise() and date_sunset have been deprecated in favor of date_sun_info()

- strptime() has been deprecated. Use date_parse_from_format() instead (for locale-

independent parsing), or IntlDateFormatter::parse() (for locale-dependent parsing).

- strftime() and gmstrftime() have been deprecated. Use date() instead (for locale-

independent formatting), or IntlDateFormatter::format() (for locale-dependent

formatting).

- The FILTER_SANITIZE_STRING and FILTER_SANITIZE_STRIPPED filters have been

deprecated. The filter.default INI directive is also deprecated.

- The mhash(), mhash_keygen_s2k(), mhash_count(), mhash_get_block_size(), and

mhash_get_hash_name() functions have been deprecated. Use the hash_*() functions

instead.

- Calling IntlCalendar::roll() with a bool argument is deprecated. Use 1 and -1 instead of

true and false, respectively.

- Calling key(), current(), next(), prev(), reset(), or end() on objects is deprecated. Either

use get_mangled_object_vars() on the object first, or use ArrayIterator .

- The auto_detect_line_endings INI directive is deprecated. If you need to detect line

endings, handle “ \r” line breaks manually instead.

- The FILE_BINARY and FILE_TEXT constants have been deprecated. They never had any

effect.

- The creation of dynamic properties is deprecated, unless the class opts in by using the

#[\AllowDynamicProperties] attribute.

- Callables that are not accepted by the $callable() syntax are deprecated.

- The ${var} style of string interpolation is deprecated. Use “$var”/”{$var}” instead.

- Usage of the QPrint, Base64, Uuencode, and HTML-ENTITIES text encodings is

deprecated for all MBString functions.

- utf8_encode() and utf8_decode() have been deprecated.

MISCELLANEOUS CHANGES

- We have replaced the mod_php module with FastCGI. Because of this, the following

implications need to be kept in mind, including:

- The directory in which the conf file for FastCGI is stored in

Apache/mod_fcgi+php-fpm (as opposed to mod_php’s Apache/mod_php)

- The removal of support for mod_php will also incur the removal of the support

of the usage of ‘php_value’ and ‘php_flag’ in .htaccess.

- PHP logs for the FastCGI module are set in php-fpm configs

https://www.php.net/manual/en/function.date-sun-info.php
https://www.php.net/manual/en/function.date-parse-from-format.php
https://www.php.net/manual/en/intldateformatter.parse.php
https://www.php.net/manual/en/function.date.php
https://www.php.net/manual/en/intldateformatter.format.php
https://www.php.net/manual/en/function.mhash.php
https://www.php.net/manual/en/function.mhash-keygen-s2k.php
https://www.php.net/manual/en/function.mhash-count.php
https://www.php.net/manual/en/function.mhash-get-block-size.php
https://www.php.net/manual/en/function.mhash-get-hash-name.php
https://www.php.net/manual/en/class.arrayiterator.php

- In order to add hotlink content (like js, css, images), Options +FollowSymLinks -

Indexes must be set in .htaccess, while using the symlink for /var/www/html ->

/UserData/AppData/webroot.

- It can also be set as a directive for the whole web root in an apache conf file.

- The behavior of PHP PDO, when querying for a database, has changed for number-type

columns. Consider the following code snippet for a more elaborate explanation:

In PHP 8.1, when querying a database, PHP PDO will now return integers for number type

columns whereas in previous versions it returned strings. Either ensure your code won't break

due to, for instance, triple equals checks, or set PDO to "stringify" all data coming from a

database to keep the same behavior as PDO prior to PHP 8.1.

Example 1: Accept new PDO behavior and make sure triple equals still work

// Change this

$searchId = '1';

$isMatch = $idReturnedFromDb === $searchId;

// To this

$searchId = '1';

$isMatch = $idReturnedFromDb === (int) $searchId;

Example 2: Set PDO to cast all data to strings as it did prior to PHP 8.1

$dbConnection = new \PDO($dsn, $user, $pass);

$dbConnection->setAttribute(\PDO::ATTR_STRINGIFY_FETCHES, true);

BACK TO TOP

INDEPENDENT-VERSION CHANGES

5.6 - 7.0

BACKWARDS-INCOMPATIBLE CHANGES

- Several fatal errors have been converted into Exceptions, a tool to check for possible

fatal errors before they execute. These exceptions extend the Error class in PHP, which

further extend the Throwable class. Therefore, custom error handles may no longer be

triggered due to an exception being thrown instead, causing fatal errors for said

uncaught exceptions. The PHP 7 errors page contains further information on the

behaviors of errors.

- The function set_exception_handler is no longer guaranteed to receive Exception

objects, causing a fatal error when an exception handler initialized with said function

using a type declaration of Exception tries to catch an Error object. To make the

set_exception_handler() function work on PHP7, simply replace the exception type

declaration with Throwable.

- Internal constructors always throw exceptions on failure, instead of an unusable object

or null.

- Variable handling has been changed. Due to this, handling of indirections have also

changed. The following chart should serve as a guide on the differences between PHP5’s

interpretation and PHP7’s interpretation. Any intentions for a certain expression to

utilize a PHP5 interpretation must be changed to accommodate to these new changes:

Expressions: PHP 5.6’s interpretation: PHP 7.0’s interpretation:

$$foo[‘bar’][‘baz’] ${$foo[‘bar’][‘baz’]} ($$foo)[‘bar’][‘baz’]

$foo->$bar[‘baz’] $foo->{$bar[‘baz’]} ($foo->$bar)[‘baz’]

$foo->$bar[‘baz’]() $foo->{$bar[‘baz’]}() ($foo->$bar)[‘baz’]()

Foo::$bar[‘baz’]() Foo::{$bar[‘baz’]}() (Foo::$bar)[‘baz’]()

- However, if you want to use the old interpretation, just explicitly write the expression in

the PHP 5 interpretation format.

- The changes to indirection also affect the global keyword, but the curly brace syntax can

be used to emulate the previous behavior if needed:

Example:

<?php

function f() {

 // Valid in PHP 5 only.

https://www.php.net/manual/en/language.errors.php7.php

 global $$foo->bar;

 // Valid in PHP 5 and 7.

 global ${$foo->bar};

}

?>

- list() handling has also been changed.

- list() no longer assigns the variables in reverse order, and now assigns variables in the

order they are defined.

- list() constructs can no longer be empty. The following are illegal in PHP7 and beyond:

<?php

list() = $a;

list(,,) = $a;

list($x, list(), $y) = $a;

?>

- list() can no longer be used to convert strings into arrays. Use str_split() instead.

- Parentheses in function arguments (what you pass in to functions) no longer affect

behavior, and the presence of parentheses in function arguments now generates

warnings in PHP7. (Could be deprecated later on.) Instead, make sure to define new

values with whatever you would place in the parentheses in function arguments, and

then pass those values in the function arguments.

- Integer handling has been changed.

- Octal literals that contain invalid numbers (that is, octals that contain 8 and/or 9 as

digits), now cause a parse error.

- Bit-shifts (>> and <<) by negative numbers now result in errors.

- Bit-shifts in both directions beyond 64 now always result in 0.

- Division by 0 has been changed. Consult the following table to learn of the distinctions.

Expression PHP 5.6 Output PHP 7.0 Output

3 / 0 E_WARNING + false float(INF)

0 / 0 E_WARNING + false float(NAN)

0 % 0 E_WARNING + false Fatal Error

- String handling has been changed.

https://www.php.net/manual/en/function.str-split.php

- Hexadecimal numbers are no longer considered as numeric meaning they cannot be

used wherever a numeric string can be used. Consult the following table for more

information:

Code to run: PHP 5.6 Output PHP 7.0 Output:

<?php
var_dump("0x123" == "291");
var_dump(is_numeric("0x123
"));
var_dump("0xe" + "0x1");
var_dump(substr("foo",
"0x1"));
?>

bool(true)
bool(true)
int(15)
string(2) "oo"

bool(false)
bool(false)
int(0)

Notice: A non well formed
numeric value encountered
in /tmp/test.php on line 5
string(3) "foo"

- filter_var() Can be used to check if a string contains a hex number, and also to convert

a string of that type to an int.

- \u can cause errors, and should be removed.

- Several functions have been removed. A list of removed functions is provided:

● call_user_method()

● call_user_method_array()

● All ereg* functions

● Mcrypt aliases

● All ext/mysql functions

● All ext/mssql functions

● Intl aliases

● set_magic_quotes_runtime() and magic_quotes_runtime()

● set_socket_blocking()

● dl()

● PostScript Type 1 fonts

- New objects cannot be assigned by reference (=&)

- Null, true, and false cannot be used to name classes, interfaces, and traits.

- Additionally, resource, object, mixed, and numeric should not be used to name classes,

interfaces, and traits.

- Yield is now a right associative operator. Parentheses can be used to preserve the

original intention.

- Functions can no longer have multiple parameters with the same name

- Functions inspecting arguments now report the current parameter value.

- Switch statements cannot have multiple default blocks

https://www.php.net/manual/en/function.filter-var.php

- $HTTP_RAW_POST_DATA has been removed, and the php://input stream should be

used instead.

- The JSON extension is replaced with JSOND, causing 3 major changes

1. Numbers can no longer end in a decimal point.

2. When using scientific notation, exponents must not immediately follow a

decimal point.

3. Empty strings are no longer considered valid JSON.

DEPRECATED FEATURES

- PHP4 style constructors(methods with the same name as the class they are defined in)

are now deprecated.

- Static calls to non-static methods are deprecated.

- password_hash() salt option is now deprecated.

- The ldap_sort() function has been deprecated.

- The capture_session_meta SSL option has been deprecated.

7.0 - 7.1

BACKWARDS-INCOMPATIBLE CHANGES

- Prior to 7.1, you were able to pass a function with too few arguments, only scoring a

warning. Now, this results in an Error exception being thrown. To avert this crisis, make

sure to either create overloaded versions of functions that accommodate for a lower list

of parameters, or just add default values in the function call. In layman’s terms,

overloaded functions share the same name, but have different parameter lists and/or

different body code. To accommodate for less parameter cases, simply copy - paste the

old function, omit a selected parameter in the parameter list, and initialize it in the body

as a default value.

- Dynamic calls (or calls that either inspect or modify another class), are forbidden for the

following functions:

● assert() (with a string as the first argument)

● compact()

● extract()

● func_get_args()

● func_get_arg()

https://www.php.net/manual/en/wrappers.php.php#wrappers.php.input
https://www.php.net/manual/en/function.ldap-sort.php

● func_num_args()

● get_defined_vars()

● mb_parse_str() (with one argument)

● parse_str() (with one argument)

- Doing said dynamic calls will result in a warning (but will possibly later on will be

promoted to Error exceptions and fatal errors)

- An example of a dynamic call can be found below:

<?php

(function () {

 $func = 'func_num_args';

 $func();

})();

- The following names cannot be used to name iterables, strings, and traits:

● Void

● iterable

- Integer operations and conversions on numerical strings now respect scientific notation.

- This also includes the (int) typecast operation, and conversions between decimal and

any other format. A list of functions affected can be found below:

● intval() (where the base is 10)

● settype()

● decbin()

● decoct()

● dechex()

- rand() is now aliased to mt_rand()

- srand() is now aliased to mt_srand().

- The preceding two changes also affect the following functions:

● rand()

● shuffle()

● str_shuffle()

● array_rand()

- The ASCII delete control character (0x7F) can no longer be used in identifiers.

- Calling destructors on incomplete objects is now forbidden, and destructors are never

called on objects that throw an exception during their initialization.

- call_user_func() and call_user_func_array() now always generate warnings upon calls to

functions that expect references as arguments.

- The empty index operator is now not supported for strings anymore, and trying to apply

it to a string now throws a fatal error.

- Example of applying an empty index operator to a string:

$str[] = $x

- String modification by character on empty strings now works like for non-empty strings.

A table of the change in string modification is provided below.

Code Output in PHP 7.0 Output in PHP 7.1

<?php
$a = '';
$a[10] = 'foo';
var_dump($a);
?>

array(1) {
 [10]=>
 string(3) "foo"
}

string(11) " f"

- As you can see, writing to a location out of range pads the offset with spaces, and only

the first character of the assigned character is used.

- The following ini directives have been removed:

● session.entropy_file

● session.entropy_length

● session.hash_function

● session.hash_bits_per_character

- The ordering of elements in an array has changed when said elements have been

automatically created by referencing them in by a reference assignment. Consult the

following table for further information about this change:

Code Output in PHP 7.0 Output in PHP 7.1

<?php
$array = [];
$array["a"] =& $array["b"];
$array["b"] = 1;
var_dump($array);
?>

array(2) {
 ["a"]=>
 &int(1)
 ["b"]=>
 &int(1)
}

array(2) {
 ["b"]=>
 &int(1)
 ["a"]=>
 &int(1)
}

- The error message for E_RECOVERABLE errors is now “Recoverable Fatal Error”

- The $options parameter of unserialize() is now strictly typed, only allowing arrays and

bools to be given.

- DateTime and DateTimeImmutable now incorporate microseconds, resulting in

comparisons between two instances that are one microsecond apart producing false.

- long2ip() now expects an int instead of a string.

- Return statements without arguments in functions that declare a return type are now

forbidden.

DEPRECATED FEATURES

- ext/mcrypt is deprecated, and will be removed in PHP 7.2

- The e pattern modifier has been deprecated for the following functions:

- mb_ereg_replace()

- mb_eregi_replace()

7.1 - 7.2

BACKWARDS-INCOMPATIBLE CHANGES

- number_format() no longer can be able to return -0.

- Integer keys from arrays can now be able to be converted to objects, when casting

arrays to objects, and vice versa. Consider what is now available in the following 2 code

snippets:

Code Snippet 1:

<?php

// array to object

$arr = [0 => 1];

$obj = (object)$arr;

var_dump(

 $obj,

 $obj->{'0'}, // now accessible

 $obj->{0} // now accessible

);

Code Snippet 2:

<?php

// object to array

$obj = new class {

https://www.php.net/manual/en/function.mb-ereg-replace.php
https://www.php.net/manual/en/function.mb-eregi-replace.php

 public function __construct()

 {

 $this->{0} = 1;

 }

};

$arr = (array)$obj;

var_dump(

 $arr,

 $arr[0], // now accessible

 $arr['0'] // now accessible

);

- Passing null to the get_class() function now results in a E_WARNING instead of the name

of the enclosing class. In order to produce the same results that would be achieved in

prior versions, simply omit the argument.

- Attempting to count() non-countable types now results in an E_WARNING error.

- This also affects the alias function sizeof()

- Arrays and objects of classes extending the Countable interface are considered

countable types.

- gettype(), when used on a closed resource, now results in a string of “resource (closed)”

being returned (as opposed to a string of “unknown type”)

- Using the is_object() function on the __PHP_Incomplete_Class class now returns true.

- Unqualified references to undefined constraints now result in an E_WARNING error.

- The officially supported minimum Windows version is now Windows 7.

- The object name is now hard-reserved, prohibiting it from being used as a class, trait, or

interface name.

- Support for NetWare is now removed.

- The bcmod() function no longer truncates fractional numbers to integers.

- The following hash functions no longer accept non-cryptographic hashes:

● hash_hmac()

● hash_hmac_file()

● hash_pbkdf2()

● hash_init()

- The sql.safe_mode ini setting is now removed.

- The zone element of the array resulting from the date_parse() and

date_parse_from_format() now represents seconds instead of minutes.

- The names of incoming cookies are now no longer url-decoded.

https://www.php.net/manual/en/function.count.php
https://www.php.net/manual/en/function.hash-hmac.php
https://www.php.net/manual/en/function.hash-hmac-file.php
https://www.php.net/manual/en/function.hash-pbkdf2.php
https://www.php.net/manual/en/function.hash-init.php

DEPRECATED FEATURES

- Unquoted strings (non-existent global constants took as strings of themselves) are now

deprecated.

- The png2wbmp() and jpeg2wbmp() functions are now deprecated and will be removed

in 8.0

- The __autoload function has been deprecated.

- The create_function() function has now been deprecated and should be replaced with

uses of anonymous functions.

- The (unset) cast is now deprecated.

- Using parse_str() with out the second argument is now deprecated.

- each() has been deprecated.

- assert() with a string argument is now deprecated.

- The read_exif_data() alias of the exif_read_data() function is now deprecated, and the

original function should be used instead.

7.2 - 7.3

BACKWARDS-INCOMPATIBLE CHANGES

- Heredoc/Nowdoc changes have been made, thus causing doc strings that contain the

end label inside their body to cause syntax errors.

- Continue statements that target switch control flow structures now generate warnings.

To absolve this issue, replace every mention of continue in the switch statement with

continue 2.

- Array accesses, where an array extends ArrayAccess, using string literals no longer result

in an implicit cast from string literal to integer.

- Static properties are no longer separated by reference assignments, where static

properties could be overridden by a typecast in a child cast. The loophole has now been

fixed.

- References returned by Array and Property Accesses are now immediately unwrapped,

providing the value instead of the memory address.

- Support for BeOS has been dropped.

- Exceptions thrown due to automatic conversions of warnings into exceptions now work

the same way as manually-thrown exceptions.

- TypeError now reports wrong types as int and bool, instead of integer and boolean.

- rsh/ssh logins are disabled by default. Use imap.enable_insecure_rsh if you want to

enable them.

- Reflection export to string now uses int and bool instead of integer and boolean.

https://www.php.net/manual/en/imap.configuration.php#ini.imap.enable-insecure-rsh

DEPRECATED FEATURES

- The declaration of case-sensitive constants is now deprecated.

- Declaring a function called assert() inside a namespace is now deprecated.

- The fgetss() function is now deprecated.

- image2wbmp() is now deprecated.

7.3 - 7.4

BACKWARDS-INCOMPATIBLE CHANGES

- Trying to use values of types null, bool, int, float, or resource as an array will now

generate notices.

- The get_declared_classes() function no longer returns anonymous classes that have not

been instantiated yet.

- Fn is now a reserved keyword.

- A <?php tag at the end of a file will now be interpreted as an opening PHP tag.

- Password-hashing algorithm identifiers are now nullable strings instead of ints.

- htmlentities() now raises a notice if it is used with an encoding for which only basic

entity substitution is supported..

- Fread() and fwrite() now return false if the operation failed.

- Attempting to serialize a CURLFile class or a Reflection object now generates an

exception.

- Calling var_dump() or a similar function on a DateTime or DateTimeImmutable object

now no longer leaves behind accessible properties on the object.

- Calling get_object_vars() on an ArrayObject instance now always returns the properties

of the ArrayObject itself. Previously, it returned the values of the wrapped array/object.

DEPRECATED FEATURES

- Nested ternary operations must explicitly use parentheses to dictate the order of

operations.

- Array and string offset access syntax using curly braces is now deprecated.

- The (real) cast is deprecated. Use (float) as well. Same goes for the is_real() function and

the is_float() function, respectively.

- Unbinding $this of a non-static closure that uses $this is deprecated.

https://www.php.net/manual/en/function.get-declared-classes.php

- Using parent inside of a class without a parent is deprecated.

- The money_format() function is deprecated.

7.4 - 8.0

BACKWARDS-INCOMPATIBLE CHANGES

- String-to-number comparisons have been changed. Non-strict comparisons between a

number and a string now work by casting the number to a string and then comparing

the two strings. Consult the following table to learn more about this new behavior:

Comparison PHP 7.4 evaluation PHP 8.0 evaluation

0 == “0” True true

0 == “0.0” True true

0 == “foo” True false

0 == “” True false

42 == “ 42” True true

42 == “42foo” True false

- Match is now a reserved keyword.

- Mixed is now a reserved word, and can no longer be used to name a class, trait, or an

interface.

- Assertion failures now throw by default. If the old behavior is wanted, set

assert.exception=0 in the ini settings.

- Methods with the same name as the class are no longer interpreted as constructors. The

__construct() method should be used instead.

- The ability to call non-static methods statically has been removed.

- The (real) and (unset) casts have been removed.

- Due to the removal of the track_errors ini directive, php_errormsg is no longer

available. You can use the error_get_last() function instead.

- each() has been removed, replaced with foreach and ArrayIterator.

- The ability to unbind this from proper closures that contain uses of this have also been

removed.

- Any array that uses a number n as its first numeric key will use n + 1 for its next implicit

key, even if n is negative.

https://www.php.net/manual/en/language.oop5.decon.php#object.construct
https://www.php.net/manual/en/function.error-get-last.php
https://www.php.net/manual/en/control-structures.foreach.php

- The default error reporting label is now E_ALL.

- Display_startup_errors is now enabled by default.

- The @ operator will no longer silence fatal errors, and error handlers that expect

error_reporting to be 0 when @ is used should be adjusted to use a mask check instead.

Consult the following code snippet for more information:

<?php

// Replace

function my_error_handler($err_no, $err_msg, $filename, $linenum) {

if (error_reporting() == 0) {

return false;

}

// ...

}

// With

function my_error_handler($err_no, $err_msg, $filename, $linenum) {

if (!(error_reporting() & $err_no)) {

return false;

}

// ...

}

?>

- As for replacing the functionality of the error suppression operator, @, wrapping the

function call in a try catch is the suggested replacement. Example:

 // Change this

$image = @imagecreatefromjpeg($imagePath);

if (!$image) {

 // handle failure

}

// To something like this

try {

 $image = imagecreatefromjpeg($imagePath);

} catch (\Throwable $e) {

 $hadError = true;

}

if (($hadError ?? false) || !$image) {

 // handle failure

}

- Also, please make sure that error messages are not displayed in production

environments, as it can result in information leaks. Ensure that display_errors=Off is

used in conjunction with error logging.

- #[is no longer interpreted as the start of a comment, as this syntax is now used for

attributes. Use // as the start of comments instead.

- Inheritance errors due to incompatible method signatures will now always generate a

fatal error.

- The precedence of the concatenation operator now takes the same precedence as bit

shifts (that is, after addition and subtraction).

- Arguments with a default value that resolves to null at runtime no longer implicitly

marks the argument type as null.

- The following cases now result in an Error instead of a Warning:

● Attempting to write to a property of a non-object

● Attempting to append an element to an array for which the PHP_INT_MAX key is

already used.

● Attempting to use an invalid type (array or object) as an array key or string

offset.

● Attempting to write to an array index of a scalar value.

● Attempting to unpack a non-array/Traversable.

● Attempting to access unqualified constants which are undefined.

- The following Notices have been converted into Warnings:

● Attempting to read an undefined variable.

● Attempting to read an undefined property.

● Attempting to read an unidentified array key.

● Attempting to read a property of a non-object.

● Attempting to access an array index of a non-array

● Attempting to convert an array to string.

● Attempting to use a resource as an array key.

● Attempting to use null, a boolean, or a float as a string offset.

● Attempting to read an out-of-bounds string offset.

● Attempting to assign an empty string to a string offset.

● Attempting to assign multiple bytes to a string offset.

- Unexpected characters in source files now result in a ParseError exception.

- The generated name for anonymous classes has changed, now including the name of

the first parent or interface.

- Non-absolute trait method references in trait alias adaptations are now required to be

unambiguous.

- The signature of abstract methods defined in traits is now checked against the

implementing class method.

- The arithmetic and bitwise operators +, -, *, /, **, %, <<, >>, &, |, ^, ~, ++, -- now

consistently throw a TypeError when one of the operands is an array, resource, or non-

overloaded object.

- The only exception to the change above is the array + array merge operation, which is

still supported.

- Float to string casting now always behaves local-independently.

- Support for deprecated curly braces for offset access has been removed.

- Applying the final modifier on a private method now produces a method unless the

method is a constructor.

- If an object constructor throws or exit()s, the object destructor will no longer be called.

- Namespaced names can no longer contain whitespace (what is outputted when you

press the spacebar).

- Nested ternaries now require explicit parentheses.

- Declaring a function called assert() inside a whitespace is no longer allowed.

- Several resource s have been migrated to objects.

- The ability to import case-insensitive constants from type libraries has been removed.

- mktime() and gmmktime() now require at least one argument. time() can still be used to

get the current timestamp.

- read_exif_data() has been removed, replaced by exif_read_data().

- The functions image2wbmp(), png2wbmp(), and jpeg2wbmp() have been removed.

- gmp_random() has been removed. Use gmp_random_range() or gmp_random_bits()

instead.

- The unused default_host argument of imap_headerinfo() has been removed.

- The imap_header() alias function of imap_headerinfo() has been removed.

- The functions ldap_sort(), ldap_control_paged_result() and

ldap_control_paged_result_response() have been removed.

- The OCI-Lob class has been renamed to OCILob

- odbc_connect() no longer reuses connections.

- openssl_seal() and openssl_open() now require method to be passed.

- The default error handling mode has been changed from “silent” to “exceptions”.

- Reflection export() methods have been removed. Instead, reflection objects can be cast

to string.

https://www.php.net/manual/en/language.types.resource.php
https://www.php.net/manual/en/function.exif-read-data.php
https://www.php.net/manual/en/function.gmp-random-range.php
https://www.php.net/manual/en/function.gmp-random-bits.php

- SplFileObject::fgetss() has been removed.

- assert() will no longer evaluate string arguments, instead treating them like any other

argument.

- parse_str() can no longer be used without specifying a result array.

- The string.strip_tags filter has been removed.

- fgetss() has been removed.

DEPRECATED FEATURES

- If a parameter with a default value is followed by a required parameter, the default

value has no effect. This has been deprecated, and can be resolved by dropping the

default value.

- Calling get_defined_functions() with exclude_disabled explicitly set to false is

deprecated and now no longer has an effect.

- Sort comparisons that return true or false now throws a deprecation warning, and

should be replaced with an implementation that returns an integer less than, equal to,

or greater than 0. Consider the following code snippet as a guideline for changes to your

code:

<?php

// Replace

usort($array, fn($a, $b) => $a > $b);

// With

usort($array, fn($a, $b) => $a <=> $b);

?>

- Using an empty file as ZipArchive is deprecated.

8.0 - 8.1

BACKWARDS-INCOMPATIBLE CHANGES

- Access to the $GLOBALS array is now subject to a number of restrictions. Write access to

the entire $GLOBALS array is no longer supported, however, you can still have write

access to individual array elements.

- When a method using static variables is inherited (but not overridden), the inherited

method will now share static variables with the parent method. Consult the following

code snippet for further information:

<?php

class A {

 public static function counter() {

 static $counter = 0;

 $counter++;

 return $counter;

 }

}

class B extends A {}

var_dump(A::counter()); // int(1)

var_dump(A::counter()); // int(2)

var_dump(B::counter()); // int(3), previously int(1)

var_dump(B::counter()); // int(4), previously int(2)

?>

- This means that static variables in methods now behave the same way as static

properties.

- An optional parameter specified before required parameters is now always treated as

required, even when using named arguments. Failing to do so will result in an error

being thrown.

- Most non-final internal methods now require overriding methods to declare a

compatible return type.

- Readonly is a keyword now, but you can still use it as a function name. However, that

practice could possibly soon be deprecated, then removed, so the best practice is to

treat it as a reserved keyword.

- Never is now a reserved keyword, thus it can no longer be used to name a class,

interface, or trait. It is also prohibited from being used in namespaces.

- The mysqlnd.fetch_data_copy INI directive has been removed.

DEPRECATED FEATURES

- Serializable must now be implemented with __serialize() or __unserialize().

- Scalar types for built-in functions are nullable by default. This feature has been

deprecated.

- The implicit conversion of float to int which leads to a loss in precision is now

deprecated. This affects array keys, int type declarations in coercive mode, and

operators working on ints.

- Calling a static method, or accessing a static property directly on a trait is deprecated.

- Returning a value which is not from an array from __sleep() now generates a diagnostic.

- data_sunrise() and date_sunset have been deprecated in favor of date_sun_info()

https://www.php.net/manual/en/functions.arguments.php#functions.arguments.default
https://www.php.net/manual/en/function.date-sun-info.php

- strptime() has been deprecated. Use date_parse_from_format() instead (for locale-

independent parsing), or IntlDateFormatter::parse() (for locale-dependent parsing).

- strftime() and gmstrftime() have been deprecated. Use date() instead (for locale-

independent formatting), or IntlDateFormatter::format() (for locale-dependent

formatting).

- The FILTER_SANITIZE_STRING and FILTER_SANITIZE_STRIPPED filters have been

deprecated. The filter.default INI directive is also deprecated.

- The mhash(), mhash_keygen_s2k(), mhash_count(), mhash_get_block_size(), and

mhash_get_hash_name() functions have been deprecated. Use the hash_*() functions

instead.

- Calling IntlCalendar::roll() with a bool argument is deprecated. Use 1 and -1 instead of

true and false, respectively.

- Calling key(), current(), next(), prev(), reset(), or end() on objects is deprecated. Either

use get_mangled_object_vars() on the object first, or use ArrayIterator .

- The auto_detect_line_endings INI directive is deprecated. If you need to detect line

endings, handle “ \r” line breaks manually instead.

- The FILE_BINARY and FILE_TEXT constants have been deprecated. They never had any

effect.

8.1 - 8.2

BACKWARDS-INCOMPATIBLE CHANGES

- DateTime’s createFromImmutable function and DateTimeImmutable’s

createFromMutable function now tentatively return static, instead of a DateTime object

or a DateTimeImmutable object, respectively. The object operator will no longer work

with what is returned from this function, and the scope resolution operator (::), should

be used to access the properties.

- Number symbols in relative formats no longer accept a plus sign followed by a minus

sign, i.e. +-2

- The ODBC and PDO_ODBC extensions now escape the username and password in the

case where both a connection string and a username/password are passed, and the

string must be appended to.

- glob() now returns an empty array if all paths are restricted by open_basedir(), instead

of returning false. Use the following code snippet to preserve the original result:

if(count(glob()) == 0){

Return false;

}else{

https://www.php.net/manual/en/function.date-parse-from-format.php
https://www.php.net/manual/en/intldateformatter.parse.php
https://www.php.net/manual/en/function.date.php
https://www.php.net/manual/en/intldateformatter.format.php
https://www.php.net/manual/en/function.mhash.php
https://www.php.net/manual/en/function.mhash-keygen-s2k.php
https://www.php.net/manual/en/function.mhash-count.php
https://www.php.net/manual/en/function.mhash-get-block-size.php
https://www.php.net/manual/en/function.mhash-get-hash-name.php
https://www.php.net/manual/en/class.arrayiterator.php
https://www.php.net/manual/en/datetime.formats.relative.php

Return glob();

}

- FileSystemIterator::__construct(): To maintain its previous behavior, the

FileSystemIterator::SKIP_DOTS constant must be explicitly set using the flags parameter.

- The following functions are no longer locale-sensitive, now performing ASCII case

conversion, as if the locale was C. The MBString extension offers localized versions of

these functions:

● strtolower()

● strtoupper()

● stristr()

● stripos()

● strripos()

● lcfirst()

● ucfirst()

● ucwords()

● str_ireplace()

- str_split() now returns an empty array for an empty string, instead of an array

containing a single empty string.

- ksort() and krsort() now do numeric string comparison under SORT_REGULAR using

standard PHP 8 rules.

- var_export() no longer omits the leading backslash for exported classes.

- The following methods now export their signature:

● SplFileInfo::_bad_state_ex()

● SplFileObject::getCsvControl()

● SplFileObject::fflush()

● SplFileObject::ftell()

● SplFileObject::fgetc()

● SplFileObject::fpassthru()

- SplFileObject::hasChildren() now tentatively returns false, instead of bool

- SplFileObject::getChildren() now tentatively returns null

- GlobIterator now returns an empty array if all paths are restricted by open_basedir.

DEPRECATED FEATURES

- The creation of dynamic properties is deprecated, unless the class opts in by using the

#[\AllowDynamicProperties] attribute.

- Callables that are not accepted by the $callable() syntax are deprecated.

- The ${var} style of string interpolation is deprecated. Use “$var”/”{$var}” instead.

https://www.php.net/manual/en/book.mbstring.php

- Usage of the QPrint, Base64, Uuencode, and HTML-ENTITIES text encodings is

deprecated for all MBString functions.

- utf8_encode() and utf8_decode() have been deprecated.

ADDITIONAL CHANGES

- We have replaced the mod_php module with FastCGI. Because of this, the following

implications need to be kept in mind, including:

- The directory in which the conf file for FastCGI is stored in

Apache/mod_fcgi+php-fpm (as opposed to mod_php’s Apache/mod_php)

- The removal of support for mod_php will also incur the removal of the support

of the usage of ‘php_value’ and ‘php_flag’ in .htaccess.

- PHP logs for the FastCGI module are set in php-fpm configs

- In order to add hotlink content (like js, css, images), Options +FollowSymLinks -

Indexes must be set in .htaccess, while using the symlink for /var/www/html ->

/UserData/AppData/webroot.

- It can also be set as a directive for the whole web root in an apache conf file.

- External dependencies have been updated

- The error handler signature has been changed.

- cURL library added SSL host verification

- Curl_init returns CurlHandle instead of resource

- Warnings occur when counting non-countable types.

- Create_function has been removed, and an anonymous function must be used instead.

- Optional parameters before required parameters are not allowed anymore.

BACK TO TOP

Source: PHP Migration notes 5->8

• Migrating from PHP 8.0.x to PHP 8.1.x
• Migrating from PHP 7.4.x to PHP 8.0.x
• Migrating from PHP 7.3.x to PHP 7.4.x
• Migrating from PHP 7.2.x to PHP 7.3.x
• Migrating from PHP 7.1.x to PHP 7.2.x
• Migrating from PHP 7.0.x to PHP 7.1.x
• Migrating from PHP 5.6.x to PHP 7.0.x

https://www.php.net/manual/en/migration81.php
https://www.php.net/manual/en/migration80.php
https://www.php.net/manual/en/migration74.php
https://www.php.net/manual/en/migration73.php
https://www.php.net/manual/en/migration72.php
https://www.php.net/manual/en/migration71.php
https://www.php.net/manual/en/migration70.php

